
smash-proof
auditable storage for swarm

secured by masked audit secret hash

viktor trón, aron fischer, nick johnson

draft version May 2016
ethersphere orange papers 2

licensed under the Creative Commons Attribution License
http://creativecommons.org/licenses/by/2.0/

Contents

1 Introduction 3

2 Auditing chunks with pregenerated secrets 3
2.1 Audit by challenge and response . 3
2.2 Calculating the audit secret . 4
2.3 Masked audit secret hash (MASH) tree . 9
2.4 Responding to a challenge . 10

3 Repeatability and file-level audits 11
3.1 The problem of scaling audit repeatability with fixed chunks 11
3.2 Collection-level recursive audit secret hash . 11
3.3 Generating the seeds . 14

4 CRASH-proof auditing and litigation 15
4.1 Prerequisites for insured storage . 15
4.2 Document- or collection-level auditing and litigation 15
4.3 Ensuring correct syncing and distribution . 19

5 Conclusion 20

Bibliography 21

Abstract

This paper a is the result of our research into securing decentralised storage and distribution
in the context of implementing an incentive layer for swarm.
Swarm is a distributed storage platform and content distribution service, a native base
layer service of the Ethereum web 3 stack. The goal is a peer-to-peer serverless hosting,
storage and serving solution that is DDOS-resistant, has zero-downtime, is fault-tolerant
and censorship-resistant as well as self-sustaining due to a built-in incentive system.
Users of swarm need make sure their content is preserved, even when it is rarely accessed.
This kind of ensured archival necessitate integrity audits of documents and data collections
without transferring the data itself. We present a family of proofs of custody that has
properties ideal to serve these needs and allows flexible trade-offs in terms of compactness,
repeatability, third party provability and outsourceability for the various scenarios in which
audits are used.

a The authors are indebted to Gavin Wood, Vitalik Buterin and Jeffrey Wilcke for their daring vision
of the next generation internet and for their original concepts of web 3 and swarm. We thank Vitalik
Buterin, Dániel Varga, Anish Mohammed, Martin Becze, Christian Reitwiessner and Dániel A. Nagy for
their comments and suggestions. Their names here by no means imply endorsement. All errors are ours.

2

1 Introduction

Proof of custody 2 is a construct that proves to an auditor that a storer has custody of data
without the auditor having it. Such constructs can be used to audit the integrity of remotely
stored documents trustlessly. In the context of a distributed file storage system, proof of custody
schemes need to consider both storage and network communication overhead and offer flexible
trade-offs between security and cost.

In the specific context of swarm, we need to make sure we have a scheme that best adapts to

• the communication protocol used by participating peers: bzz on devp2p

• the storage protocol used: direct content addressed storage

• unit of storage: fixed small-sized chunk

• typical use-cases: long term insured storage of infrequently accessed collections of data

• existing efficient contracting/payment protocols: pairwise accounting

• existing escalation to retributive measures: litigation on the ethereum blockchain

The proof of custody scheme proposed here draws on earlier work based on well understood basic
cryptography ([4] , [1]), but in light of the above considerations a novel approach was warranted
(inspired by [6] and [2]).

2 Auditing chunks with pregenerated secrets

In this section we introduce the concept of audit by challenge and formally define the SMASH
proof of custody scheme with special attention to its application to the small fixed-size chunks
used as basic units of swarm.

2.1 Audit by challenge and response

Auditing a particular chunk 𝑐 of data is done via a challenge. Who initiates this audit and how
the challenge reaches the storer of the chunk is discussed in detail later.

To generate a challenge the original owner only needs to reveal a seed. Once the storer learns
the seed for the challenge, they can use this seed to find the corresponding secret by a procedure
defined below which requires them to have the data. The secret itself is the response to the
challenge in its simplest form.

If the secret is not prematurely revealed by the original owner, the storers must have calculated
it themselves, since it cannot be guessed and is cryptographically secure against brute forcing if
the set of seeds is large enough. As the calculation relies on the data, storers are incentivised to
keep the chunk in full. Once a secret is verified as valid, it is fair to assume that the swarm had
the file at some point. Moreover, as the seed had never been revealed until the challenge was
issued nor was the seed guessable in advance, and since the seed was also used in the calculation,
we know that storers still have the chunk currently, ie., at least they had it when the seed was
revealed.

2 In place of custody, the terms existence, storage, resource, retrievability, integrity are often used in the
literature. We see no semantic importance as to this choice of wording, but for consistency, will use custody.

3

If the storer keeps the data they will always know that they will always be able to calculate
a correct response. If a storer chooses not to preserve the data, it is impossible to be 100%
sure that they give the right secret to a challange. Given these properties it is valid to say that
responding to a challenge with a valid secret can be considered a reliable positive proof of current
custody.

Whoever initiates an audit need not know the secret only be able to check that it is correct. This
is achieved by masking the secret by hashing it and make the mask public ([6]). Thus the original
owner publishes a hash of the secret and any third party can verify that the secret the storer
provides in response to a challenge has the correct hash. Since unhashing is cryptogaphically
impossible, verifying that the secret hashes to the mask is equivalent to checking the secret
itself. If audits are to be repeated, several secrets and their corresponding masks need to be
pregenerated by the owner. However not all masks need to be remembered in order for any
third party to verify that the secret provided is correct. Instead the pregenerated masks can be
organised in a Merkle tree ([3]) and the correctness of a mask can be proven by a Merkle proof
of the mask as long as the root hash of the Merkle tree is known and trusted. In other words
the owner can pregenerate any number of audits secrets and outsource the storage of the mask
to the storer allowing storer-side proofs of the secrets’ validity.

In the remainder of this section we formalise this approach. In the context of swarm and the
discussion in this paper we use the following terminology:

owner node that produces/originates content by sending a store request

storer node that accepted a store request and stores the content

guardian the first node to accept a store request of a chunk

custodian node that has no online peer that is closer to a chunk address

auditor node that initiates an audit by sending an audit request

insurer node that is commissioned by an owner to launch audit requests on their behalf

2.2 Calculating the audit secret

The simplest non-reversible way to derive a secret from a seed and a chunk is to hash the entire
chunk with the seed prepended. Assume third parties have a way to verify that the secret given
by the challengee is correct and conclude that the storer has custody of the data. But what do
they conclude if the owner and storer disagree on the secret? In this case, an explicit proof is
needed to show that the seed and the data derive a secret (not) matching the mask.

The relevant insight here is that we pick a Merkle proof of the data chunk (𝑐) based on the seed
(𝑠) and an index (𝑗) specifying a particlar segment of the chunk, and manipulate only that to
result in the audit secret hash (ASH(𝑐, 𝑠, 𝑗)). By doing this we allow explicit proofs whose length
is logarithmic in the chunk size.

The only possible scenario when the proof is not conclusive under this simple version is if a storer
node had previously responded to a specific seed, stored the response and discarded the data.
In this case if an auditor challenges the same chunk with the same index and seed, the storer
can respond correctly even though they no longer have the data stored. On the other hand, if
the indexes are not recycled, storers can be absolutely sure they can get rid of those parts of a
chunk that the already-used indices referred to. To mitigate this, we propose that segment index
for an audit is derived from a fixed slice of bits of the seed itself (essentially random bits), so
indexes will be recycled during successive audits. Given the seed 𝑠 and the number of segments

4

in the chunk 2𝑑 = 𝑛 we propose that the index can be deduced from the seed as

𝑗 ≡ 𝑠 mod 2𝑑

In other words, the last 𝑑 bits of the seed map to 𝑗.

So given a chunk 𝑐, a seed 𝑠, we construct the secret the following way.

1. First we make sure all chunks have lengths that are powers of 2 padding shorter
chunks as necessary. If chunk 𝑐≪ is shorter than the predefined maximum chunk size
(MaxChunkSize = 2𝑚) then we append to it some padding to make the length of resulting
data blob (pad(𝑐≪)) the smallest power of 2 𝑚′ such that 2𝑚

′
> 𝑛. In particular appending

hashes until the length exceeds the first power of two and then finally we truncate 3 .

pad(𝑐, 𝑠, 𝑖)
def
=

{︃
𝑐, if 𝑖 = 0

pad(𝑐, 𝑠, 𝑖− 1) ‖ ℋ(pad(𝑐, 𝑠, 𝑖− 1) ‖ 𝑠), otherwise

Then we define the padded chunk as

pad(𝑐≪)
def
= pad(𝑐≪, 𝑠, 𝑖)[0 : 2𝑚

′
]

where 𝑖 is chosen as the smallest index such that

len(𝑐≪) + 𝑖 · sizeof(ℋ) >= 𝑚′

With this padding process defined, we will from now on assume that all chunks have a length
that is a power of 2, therefore the next step is well defined.

2. Chop the chunk into hash sized segments. Assume for convenience that hash size is a
power of two: sizeof(ℋ) = 2ℎ and ℎ < 𝑚, then 𝑐 is a concatenation of 𝑛 segments (for
padded shorter chunks 𝑚 < MaxChunkSize):

𝑐 = 𝜎0 ‖ 𝜎1 ‖ . . . ‖ 𝜎𝑛−1 where

𝑛 = 2𝑚−ℎ

len(𝜎𝑖) = 2ℎ for 0 ≤ 𝑖 < 𝑛

We introduce the following notation to project a chunk to its 𝑗th segment. This allows us to
view a chunk of data as a segment array.

𝑐⟨𝑗⟩ def
= 𝜎𝑗

𝑐⟨𝑗 : 𝑘⟩ def
= 𝜎𝑗 ‖ 𝜎𝑗+1 ‖ . . . ‖ 𝜎𝑘

3. Now calculate the modified version of the data. Take the 𝑗th segment of the chunk and
replace it with a modified segment that is the original segment hashed with the seed
appended:

3 ‖ stands for concatenation, and the notation 𝑥[𝑖 : 𝑗] stands for the byteslice 𝑥[𝑖] ‖ 𝑥[1] ‖ · · · ‖ 𝑥[𝑗 − 1] where
𝑥[𝑖] is the 𝑖th byte of 𝑥. ℋ stands for a hash function of choice. To help readability, the variable 𝑐 always stands
for a chunk of data, 𝜎 for a segment of a chunk, 𝜆 for levels of Merkle trees, 𝑠 for seed.

5

∆(𝑐, 𝑠)
def
= 𝑐⟨0 : 𝑗 − 1⟩ ‖ ℋ(𝜎𝑗 ‖ 𝑠) ‖ 𝑐⟨𝑗 + 1 : 𝑛− 1⟩

where

𝑗 = 𝑠 mod 2𝑑

4. Build up a binary Merkle tree over the segments. Since the number of segments is a power
of 2, the resulting tree is regular and balanced. Calculate the Merkle root of this Merkle
tree to arrive at the audit secret.

We define the tree in this way to ensure that calculating the audit secret hash requires you to
have the chunk itself and also that malicious users cannot cheat the audit by precalculating the
tree and forgetting the chunk.

Let us now fix notation for the hashes in a generic regular binary Merkle tree. Leaf nodes are
at 𝜆 = 0, non-leaf nodes at 𝜆 ≥ 1.

ℳ2,ℋ(𝑐, 𝜆, 𝑖)
def
=

{︃
ℋ(𝑐⟨𝑖⟩), if 𝜆 = 0

ℋ(ℳ2,ℋ(𝑐, 𝜆− 1, 2 · 𝑖) ‖ℳ2,ℋ(𝑐, 𝜆− 1, 2 · 𝑖 + 1)), otherwise

and we denote the Merkle root of the chunk as

ℜ(𝑐) = ℳ2,ℋ(𝑐, 𝑑, 0)

We can define the audit secret hash as the Merkle root of the chunk with the modified segment

ASH(𝑐, 𝑠)
def
= ℜ(∆(𝑐, 𝑠))

As the other segments (𝜎𝑖; 𝑖 ̸= 𝑗) did not change, if one knows the Merkle proof belonging to
segment 𝑗 of the original chunk then, given the seed, the modified Merkle proof can simply be
recalculated in exactly 𝑑 steps. This essentially means that the number of steps in the proof of
correctness is logarithmic in the chunk length.

Let us examine this Merkle proof in detail. We begin by introducing notation for the successive
nodes of the Merkle proof for the 𝑗th segment of a chunk (see also figure 2):

𝒞ℋ𝜆(𝑐, 𝑗)
def
= ℳ2,ℋ(𝑐, 𝜆, 𝐼𝐶(𝜆, 𝑗))

𝒫ℋ𝜆(𝑐, 𝑗)
def
= ℳ2,ℋ(𝑐, 𝜆, 𝐼𝑃 (𝜆, 𝑗))

where

𝐼𝐶(𝜆, 𝑗) =
𝑗 − (𝑗 mod 2𝜆)

2𝜆+1

𝐼𝑃 (𝜆, 𝑗) =

{︃
𝐼𝐶(𝜆, 𝑗) + 1, if 𝐼𝐶(𝜆, 𝑗) mod 2 = 0

𝐼𝐶(𝜆, 𝑗) − 1, otherwise

Since 𝐼𝐶(𝜆, 𝑗) mod 2 is the 𝜆-th least significant bit in the binary representation of 𝑗, the index’s
bits inform us which order 𝒞ℋ and 𝒫ℋ are concatenated to yield the hash of the next level.
Define the directional hash function:

ℋ≡
𝑑 (𝑥, 𝑦, 𝑗, 𝜆)

def
=

{︃
ℋ(𝑥 ‖ 𝑦), if the (𝑑− 𝜆)-th bit of 𝑗 is 0

ℋ(𝑦 ‖ 𝑥), otherwise

6

H7
0 audit secret

H6
0

H5
0

H4
0

H3
0

H2
0

H1
0

H0
0

c0

H0
1

c1

H1
1

H2
1

H3
1

H4
1

H3
4 H3

5

H2
10

H1
21 H1

22

H0
42

c42

H0
43

c43

H2
11

H5
1

H6
1

H5
2 H5

3

H4
6 H4

7

H3
14 H3

15

H3
30 H2

31

H1
62 H1

63

H0
126

c126

H0
127

c127

Fig. 1: The figure represents the Merkle tree for a chunk (𝐻𝜆
𝑖

def
= ℳ2,ℋ(𝑐, 𝜆, 𝑖)). Shaded in grey

in the middle is the Merkle proof for index 42 (7-bit binary represetation is 0011010). The proof
can be verified knowing only the data segments at the given index 𝑗 = 42 and its sister segment
(next segment if index is even, previous if odd), plus sister hashes at each level as indicated.

7

Now, given 𝑗, 𝑐⟨𝑗⟩ and 𝒫ℋ0, . . . ,𝒫ℋ𝑑−1, we can calculate 𝒞ℋ0, 𝒞ℋ1, . . . , 𝒞ℋ𝑑

𝒞ℋ𝜆(𝑐, 𝑗) =

{︃
ℋ(𝑐⟨𝑗⟩), if 𝜆 = 0

ℋ≡
𝑑 (𝒞ℋ𝜆−1,𝒫ℋ𝜆−1, 𝜆− 1), otherwise

Given a Merkle proof then, both the chunk hash and the audit hash can be verified. For the
latter the auditor simply plugs in the salted segment (segment 𝑗 hashed together with the seed)
and calculates the audit secret hash as the root using the same side hashes as the original proof
(Figure 2).

𝒜ℋ𝜆(𝑐, 𝑠) =

{︃
ℋ(𝑐⟨𝑠 mod 2𝑑⟩ ‖ 𝑠), if 𝜆 = 0

ℋ≡
𝑑 (𝒞ℋ𝜆−1,𝒫ℋ𝜆−1, 𝜆− 1), otherwise

and

ASH(𝑐, 𝑠) = 𝒜ℋ𝑑(𝑐, 𝑠)

CH 7 smash chunk hash

CH 6

CH 5

PH 4 CH 4

PH 3 CH 3

CH 2

PH 1 CH 1

CH 0

c42

PH 0

c43

PH 2

PH 5

PH 6

AH 7 audit secret hash

AH 6

AH 5

PH 4 AH 4

PH 3 AH 3

AH 2

PH 1 AH 1

AH 0

S(cj , s)

PH 0

c43

PH 2

PH 5

PH 6

Fig. 2: Given a chunk hash, a seed, and the index, the audit secret hash for ASH(𝑐, 𝑠, 𝑗) can be
calculated and verified using only the Merkle proof for the segment at the index. The left hand
side is the Merkle structure of the original segmented chunk, the right hand side represents the
corresponding Merkle proof for the audit secret.

If an auditor maliciously published a false ASH, then a storer would find that the ASH they
calculated does not match the published one. In this case it is important that the storer can

8

prove that they are innocent - that it is the published ASH that is fraudulent. The Merkle
proof of the segmented chunk (Figure 2) proves that they really are storing the chunk and the
corresponding Merkle proof proves that the ASH they calculated is the correct one.

2.3 Masked audit secret hash (MASH) tree

Now we turn to the formal definition of the masked audit secret hash tree. This is relevant for
repeatable audits without remembering the secrets themselves. The basic idea is to store all
the masked secrets in a Merkle tree (MASH tree) and to remember only the root of this tree
(MASH root). A successful response to a challenge contains not just the secret, but also the
Merkle proof from the secret to the MASH root.

Assume that we have 𝑘 = 2𝑟 audit seeds 𝑠0, . . . 𝑠𝑘−1 specific to a chunk. Each audit seed allows
nodes to launch an independent challenge to the swarm and check that the associated data is
preserved. We define 𝑟 as the repeatability order of the audit. Using the audit seeds and the
chunk one can construct a masked audit secret hash tree (MASH tree) as follows:

1. Given a chunk and the 𝑛 audit seeds, calculate the corresponding audit secrets.

2. Given the 𝑛 audit secrets, construct 𝑛 masked audit secrets by taking their hash (MASH).

MASH(𝑐, 𝑖) = ℋ(ASH(𝑐, 𝑠𝑖)) for 0 ≤ 𝑖 < 𝑘

3. All of these masked secrets need to be stored by storers in order to prove either the correctness
of their secret or incorrectness of some seed. So take the masked secrets in the order of indexes
and build the binary Merkle tree of the pieces. The root of this Merkle tree is the MASH root.

ℜ[MASH](𝑐) = ℜ(MASH(𝑐, 0) ‖ MASH(𝑐, 1) ‖ . . . ‖ MASH(𝑐, 𝑘 − 1))

4. Only the MASH root needs to be remembered by the owner and it should always be
referenced as part of the challenge.

The MASH proof for a particular seed can be verified by only knowing the root mask at the
given index and the sister hashes at each level of the proof. The process is entirely analogous to
the case of the smash chunk hash.

We assume that the length of the MASH proof 𝒫[MASH] is 𝑙 = len(𝒫[MASH]) and the MASH
index 𝑖 of the masked secret is given (or derived from the seed, see below).

1. If 𝑙 mod 32 ≥ 0, reject the proof.

2. Set the repeatability parameter 𝑟 = 𝑙/32

3. Using the directional hash function ℋ≡
𝑑 (𝑥, 𝑦, 𝑖), the storer’s secret can now be calculated

using the following recursive definition

ℳℋ𝜆(𝑐, 𝑠) =

{︃
ℋ(ASH(𝑐, 𝑠)), if 𝜆 = 0

ℋ≡
𝑑 (𝒞ℋ𝜆−1,𝒫ℋ𝜆−1, 𝜆− 1), otherwise

and

MASH(𝑐, 𝑖) = ℳℋ𝑟(𝑐, 𝑠)

Now if MASH(𝑐, 𝑖) = ℳℋ𝑟(𝑐, 𝑠) the MASH proof is valid and one can conclude with certainty
that the file is stored in the swarm.

9

2.4 Responding to a challenge

In the simplest form, the response to the challenge is the secret itself (ASH). Storers are also able
to prove that the secret is correct if they know the mask securing the chunk: if the hash of the
secret matches the mask in the 𝑖th position in the MASH tree, answering a challenge consists of
the MASH proof of the 𝑖th mask. This is the positive response assuring the integrity of storage
of the chunk. Hence the motto: SMASH-proof = Secured by Masked Audit Secret Hash proof.
We can say the chunk is smash-proof.

If on the other hand the hash of the secret does not match the mask at the relevant index, then
the storer can give the Merkle proof of the relevant segment of the original chunk. This response
is called a smash proof, and we can say the (faulty) audit challenge has been smashed by the
storer.

Given the usual 256bit Keccak SHA3, sizeof(ℋ) = 32 used in swarm, MASH proof itself is
exactly 32(𝑟 + 1) bytes long. For instance if 𝑟 = 3, the proof with the secret takes a mere 128
bytes. A swarm chunk is 4096 = 27 · 32 bytes, so the complete ASH proof of a swarm chunk is
8 · 32 = 256 bytes.

In the latter case when the challenge is smashed, the smash proof is a little longer since it also
involves giving Merkle proofs of segments of the original chunk. In this scenario, the storer
calculated the secret from the given seed 𝑠 and found that it does not match the audit mask.
The storer then submits a Merkle proof, proving the existence and position of the respective
segments in the original chunk and, coincidentally, proving the audit mask faulty. This form
of proof can be also used if the auditor wants to make sure the secret is correctly derived from
the seed while not knowing the secret or its mask. This will be used as second pass challenge
after failed partial verification of a secret which is not 100% conclusive. To clarify: if a storer
submits a secret whose hash does not match the audit mask then either the storer submitted a
false secret, or the audit mask is wrong. By submitting the storage proof directly the storer can
prove that it is the audit mask that was faulty. This proof is also used in conjunction with the
MASH proof to prove to a third party that a challenge was invalid. This type is expected to be
used very rarely, since the only way they come about is if auditors are sending frivolous false
seeds or are publishing incorrect masks, which they are disincentivised to do.

challenge input storer knows response

Merkle proof smash chunk hash, segment index Merkle proof

ASH smash chunk hash, seed audit secret hash

ASH proof chunk segment, ASH proof

MASH proof smash chunk hash, seed, mask ok audit secret hash, MASH proof

MASH root mask not ok ASH proof, MASH proof

Fig. 3: Challenges and responses: types of challenges, their input and the response storers
can give. The first three types of challenge make no claim as to whether the auditor knows the
secret. The MASH proof challenge presupposes the storer knows the mask. The storer always
responds with the MASH proof, if they find that the mask matches they also include the audit
secret hash in their response, otherwise they submit the relevant Merkle proof (from which the
ASH can be derived).

10

3 Repeatability and file-level audits

In this section we expose the problem of scalability that comes with repeated audits of fixed
sized chunks. We show that the solution lies in finding larger structures than the chunk which
are to be audited directly, essentially auditing many chunks simultaneously. We do this in a way
that storage critical audit masks can be reused without compromising security. Incidentally, this
same method offers a systemic and rather intuitive way of auditing documents and document
collections (the units that are semantic to the users). We propose an algorithm to recursively
generate seeds for the successive chunks of a larger collection and provide a partial secret veri-
fication scheme that offers error detection and efficient backtracking to identify missing chunks.
This collection-level recursive audit secret hash (CRASH) will provide the basis for collective
iterative auditing, an efficient automated integrity protection system for the swarm.

3.1 The problem of scaling audit repeatability with fixed chunks

The choice of the repeatability parameter 𝑟 has an impact on the length of the Merkle proofs
which are needed for MASH proofs. More importantly, though, since someone needs to remember
the masks, this scheme has a fixed absolute storage overhead that is independent of the size of
the pieces we are proving the storage of. Since it is not realistic to require more than 5-10%
administrative storage overhead even for very long storage periods, larger 𝑟 values only scale if
the same seeds can guard the integrity of larger data.

In particular, take the example of a standard swarm chunk size of 4096 bytes (𝑚 = 12) and
assuming standard Keccak 256bit Sha3 hash we have ℎ = 5, 𝑑 = 7. Given the MASH base
length of 2𝑟+ℎ, 128 independent audits incurs a 100% storage overhead. Instead for a chunk
𝑟 = 0, 1, 2, 3, 4 seem realistic choices, yielding a storage overhead of 0.8, 1.6, 3.125, 6.3, 12.5%
respectively.

Ultimately, repeatability order should reflect the storage period (TTL = time to live) of the
request, therefore audit repeatability and fixed chunk-size cannot scale unless we compensate for
the overhead by reusing seeds over several chunks. This problem does not occur with Storj since
the shards can be sufficiently big, however with swarm, the base unit of contracting is the chunk.
The insight here is that we can reuse the same seed over several chunks if and only if we query
the integrity of those chunks at the same time.

Users will probably want to check the integrity of their assets on semantic units like document or
document collection, i.e., a solution should be in place to make sure litigation and auditing are
easily managed for these units. Incidentally, collection-level recursive audit secret hash solves
both problems at one go. This is the topic of the following section.

3.2 Collection-level recursive audit secret hash

In this subsection we define the audit secret hash for collections, i.e., an algorithm to calculate
an audit secret hash from a document collection using only a single audit seed. First we define
a strict ordering on all chunks in a document collection as follows:

1. Take the manifest describing the document collection and walk through the paths in the
order defined by the manifest trie (lexicographic) and define 𝑀 as the function mapping
paths to swarm hashes of the documents they route.

𝑀 : 𝒫 ↦→ Range(𝒮ℋ)

11

2. Let Π(𝑀) ⊆ Dom(𝑀) be the set of unique paths in the manifest such that if several paths
point to the same document take the first one in the order.

𝜋 ∈ Π(𝑀)
def⇔ 𝜋 ∈ Dom(𝑀) and @𝜋′ such that 𝑀(𝜋) = 𝑀(𝜋′) and 𝜋′ < 𝜋

This defines a unique set of documents and a strict ordering over documents.

For each document, take the chunk tree of a document as defined by the swarm hash chunker.
See figure 4.

1. Let △(𝜈) be the set of all nodes in the subtree encoded in 𝜈. Now define a strict ordering
of nodes in the chunk tree for document 𝑑.

𝜈 <𝑑 𝜈 ′
def⇔

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜈 ∈ △(𝜈 ′), or
∃𝜈𝑛, 𝜈𝑚, 𝑖, 𝑗, and 𝜈𝑡 such that
ℋ(𝜈𝑛) = 𝜈𝑡⟨𝑖⟩ and
ℋ(𝜈𝑚) = 𝜈𝑡⟨𝑗⟩ and
𝑖 < 𝑗

2. Combine this ordering of nodes and the ordering of unique paths in the manifest, extend
the ordering of nodes over the entire document collection as follows:

𝜈 <𝑀 𝜈 ′
def⇔

{︃
𝜈 <𝑑 𝜈 ′, if ∃𝑑 such that 𝜈, 𝜈 ′ ∈ △(𝑑) or
𝑑 <𝑀 𝑑′, if ∃𝑑, 𝑑′ such that 𝜈 ∈ △(𝑑) and 𝜈 ′ ∈ △(𝑑′)

3. Now define the set of unique nodes 𝒞(𝑀) of the document collection.

𝜈 ∈ 𝒞(𝑀)
def⇔ @𝜈 ′ such that 𝒮ℋ(𝜈) = 𝒮ℋ(𝜈 ′) and 𝜈 ′ <𝑀 𝜈

Hn
0 swarm root hash

Hn−1
0

intermediate
branching nodes

chunks of 128 hashes

Hn−2
0

H2
0

H1
0

H0
0

c0

H0
1

c1

. . .

. . .

H0
B

cB

H1
1

. . . H1
R(1)

Hn−2
1

. . . Hn−2
B

Hn−1
1

. . . Hn−1
R(n−1)

intermediate
branching nodes

chunks of 128 hashes

Hn−2
I(n−2) Hn−2

I(n−2)+1
. . . Hn−2

R(n−2)

H2
R(2)

H1
I(n−1) H1

I(n−1)+1
. . . H1

R(1)

H0
I(0)

cI(0)

H0
I(0)+1

cI(0)+1

. . .

. . .

H0
R(0)

cR(0)
leaf chunks
data level

level 0

level 1

level 2

level n− 2

level n− 1

root = level n

...

...

...

. . .

. . .

. . .

Fig. 4: The swarm hash construct. Hierarchical chunking.

The resulting ordered set of chunks will be used to define the collection-level recursive audit
secret hash.

12

1. Let 𝑀 be the manifest of a document collection and 𝒞(𝑀) = {𝑐0, 𝑐1, . . . 𝑐𝑛} be the set of
unique chunks such that 𝑐𝑖 < 𝑐𝑗 for all 0 ≤ 𝑖 < 𝑗 ≤ 𝑛. The last chunk 𝑐𝑛 is the root chunk
of the manifest.

2. Let 𝑠 be the seed for 𝑀 .

3. Define the CRASH function for 𝑀 at index 𝑖 as

CRASH(𝑀, 𝑠, 𝑖)
def
=

{︃
ASH(𝑐0, 𝑠), if 𝑖 = 0

ASH(𝑐𝑖,ℋ(CRASH(𝑀, 𝑠, 𝑖− 1) ‖ 𝑠)), otherwise

4. The collection-level recursive audit secret hash for 𝑀 is defined as

CRASH(𝑀, 𝑠)
def
= CRASH(𝑀, 𝑠, 𝑛)

In practice given a collection the owner wants to store, the secrets can be efficiently generated
at the time the files are chunked. As the chunks are uploaded, and guardian addresses and their
receipts are stored in a structure parallel to the chunk tree anyway.

This pattern can be applied to document collections covering entire sites or filesystem directories
and therefore scales very well. Given the swarm parameters of 𝑚 = 12, ℎ = 5, for a TTL requiring
repeatability order 𝑟 (for 2𝑟 independent audits without ever seeing the files again), the minimum
data size to achieve a desired maximum storage overhead ratio 𝑘 is 𝑘 · 2𝑟+5 Setting r=128, so
the masks fit into one chunk, a 20-chunk file (80KB) would allow 128 independent audits with
a 5% storage overhead 4 .

This audit will not reveal the actual secret to the individual storers of chunks, therefore it can
never be used to prove to third parties that a fix limit challenge is invalid. For the same reason
it is not used for public litigation.

If we know nothing about the individual secrets used in the recursive formula, and we use
ASH challenges to obtain CRASH(𝑀, 𝑠, 𝑖), the correctness of the secret is only verifiable after we
calculate the final CRASH(𝑀, 𝑠) and check it against the mask. If it does not match, we have
no way of identifying at what index the error occurred. Requiring ASH proofs directly at every
index, on the other hand, would incur an order of magnitude more network traffic. However, a
reasonable middle ground is possible.

The insight here is that we can use partial verification on the individual secrets. When audit-
ing, every time a new ASH secret is given, 𝜀 bits of the secret are checked. If a mismatch is
encountered, the audit enters into a second pass backtrack mode and actual Merkle proofs are
obtained from the nodes.

Note that the audit secret hash from one chunk determines the seed for the next chunk’s audit.
Since an incorrect secret yields a new random seed and thus a new subsequent secret, and since
secrets thus obtained have a uniform distribution, newly introduced errors can generate false
positives on average 1 in 2𝜀 times. As a result, the probability that any error remains undetected
for 𝑛 steps is less than 2−𝑛·𝜀. This property makes it efficient to follow a simple backtracking

4 If the audit frequencies are dependent of the TTL of chunks only, this scheme will provide a guarantees about
the proportion of chunks that are expected lost over any given period of time. With the chunksize (hash and
branching parameter) fixed, linear increase of resources provide exponentially more reliability on the individual
chunks. If the requirement is full integrity of an entire collection, the frequency of audits need to be adjusted
to make up for the (likewise) exponential loss of reliability in the number of chunk tree nodes (i.e., size of the
collection). This loss is the consequence of fixing the degree of redundancy as well as the size of the unit that
encodes it (see [5]). We are curerntly looking at the intricate interplay between integrity audits and redundant
encoding and how it can be used in a divide and conquer approach to the scaling of erasure codes.

13

strategy: when a mismatch is encountered on CRASH(𝑀, 𝑠, 𝑖), proceed by requiring Merkle proofs
for past chunks in order of their recency, i.e., 𝑐𝑖, 𝑐𝑖−1, 𝑐𝑖−2,

This is all based on the premise that the bits the errors are checked against are precalculated
and stored. This creates an extra overhead of 𝜀 bits per chunk, modifying our minimum datasize
requisite to 𝑘 · (2𝑟+𝜀+8) bits.

The exact procedure covering auditing and litigation is detailed in the following section.

3.3 Generating the seeds

Optimising the storage for owners to originate audits it is important that a series of seeds should
be deterministic so the seed can be calculated when an audit is initiated.

1. Every node has a master seed (MasterSeed) that is derived from a ethereum seed account
acc protected by a password. This master seed is never shown or cached, it only exists in
memory.

MasterSeed = ℋ(privkey(acc) ‖ address(acc))

2. Using the chunk hash, one can generate the series of base seeds for a chunk.

BaseSeed(𝑐, 0) = ℋ(MasterSeed ‖ 𝒞ℋ(𝑐))

BaseSeed(𝑐, 𝑖) = ℋ(BaseSeed(𝑐, 𝑖− 1) ‖ BaseSeed(0))

3. The 𝑖th transparently indexed seed (TIS (𝑐, 𝑖)) is obtained by replacing the first 𝑟 bits of
the base seed with the index.

TIS (𝑐, 𝑟, 𝑖) = 𝑖 · · · 22ℎ−𝑟 + (BaseSeed(𝑐, 𝑖) mod 22
ℎ−𝑟)

These transparently indexed seeds are used to generate masks to submit together with the store
request for a chunk. For entire collections, we use the transparently indexed seeds of the root
chunk of the collection manifest 5 .

This indexing scheme allows owners to generate a seed needed for an audit for any chunk without
having any information whatsoever. In order to generate a seed in range though, they need to
know the repeatability order of a chunk. We will most likely assume that 𝑟 is the logarithm of
the TTL of an insured chunk 6 .

Incidentally, this allows the owner to calculate the index of the previous seed used for the
collection from the current time and time of the receipt, so repeated audits with the same seed
can be avoided without the need to keep a cursor. Non-automated audits on chunks are expected
to occur infrequently and since they count as anomalies, they are likely to be recorded for reasons
of reputation etc.

5 It is rather unlikely that we ever need so high 𝑟 values that the security of the secret against bruteforcing is
compromised.

6 The base of this log would set the clock tick for automated audits, making it a system constant will allow
predictable audit traffic estimates given the size of the swarm.

14

4 CRASH-proof auditing and litigation

In this section we define an incentive compatible auditing and litigation process that is encoded
in the swarm protocol 7 . It relies on CRASH/SMASH challenges for proof of custody for
integrity checking which also serve as evidence sent to the blockchain when initiating public
litigation.

4.1 Prerequisites for insured storage

Suppose an owner of a chunk wishes to have it stored and insured. The owner communicates
directly with a registered peer who will act as guardian of this insured chunk. When a store
request for an insured chunk is sent from the owner to the guardian, the owner must include
the smash chunk hash 8 , as well as the MASH root and sign it together with the swarm hash
of the chunk. The smash chunk hash is needed to verify Merkle proofs, while the MASH root is
needed to verify MASH proofs. Both are needed in order to provide negative proofs against an
auditor sending frivolous audit requests.

When the store request is accepted by the guardian, they provide the owner with a receipt
consisting of the store request signed by the author and counter-signed by the guardian. We use
a court-case like system of public litigation on the blockchain, so the signatures are important
in order for smart contracts to verify if a challenge is valid.

After the owner generates the MASH tree, calculated and remembered all verification bits and
uniqueness bits, they have two options. One is to remember the data and store it along with the
chunk hash. This allows them to launch and verify simple audit requests which are responded
to by the relevant audit secret hash (ASH) value, and check that the hash of the ASH matches
the entry in the MASH tree. The other option is not to store the MASH tree, but only to
remember the MASH root. They would send off the masked audit secret hashes along with the
store request. This enables owners to obtain proofs of custody without having any parts of the
data whatsoever beyond the chunk hash, the MASH root and the signature of the receipt.

Even though querying a particular chunk is allowed and can be done manually, the automated
audit and litigation process launches audits on document collections and/or files instead.

4.2 Document- or collection-level auditing and litigation

It is expected that auditing should happen not at the chunk-by-chunk level, but at a file or
file-collection level that is semantic for the end users. The basic process for this is the following.

• The owner identifies a batch of chunks (document or collection of documents that contains
files to be retrieved at similar very low frequencies and stored for the same period) to store.

7 SWINDLE (Secured With INsurance Deposit Litigation and Escrow) is the part of the bzz protocol that
handles the logic and communications relating to auditing and litigation as well as the corresponding smart
contract on the blockchain that handles the particular court procedure.

8 At the time of writing the “swarm hash” used to identify a chunk in the swarm is simply its hash, while
the “smash chunk hash” from the Merkle proofs is the Merkle root of a binary tree that treats the chunk as 𝑛
segments of size 2ℎ (in our case 128 segments of 32 bytes). The question arises why we do not combine these
two. In particular, we could simply use the smash chunk hash (the root of the binary Merkle tree over 32 byte
sequences) instead of the simple swarm hash in the swarm chunker. This would have the benefit that smash chunk
hashes would not need to be stored separately as part of the audit metadata. However, the smash chunk hash
involves 255 hashing operations as opposed to the single one of the swarm hash, therefore, extensive benchmarks
are needed before we opt in for this option.

15

The owner submits store requests for each chunk and collects receipts from the respective
guardians.

• The owner stores all the guardians’ receipts in a parallel structure.

• The owner generates the base seeds to be used for auditing all the files listed in the manifest
and then precalculates the secrets. The owner masks the audit secret hashes by hashing
them and proceeds to build the MASH tree 9 .

• Along the way, the owner records the partial verification bits for each intermediate CRASH
secret.

• The owner calculates all the smash chunk hashes belonging to the chunks and records them
in a parallel structure.

• Finally, the owner records a uniqueness bit (a boolean flag) for each chunk. Since it it
possible that the same chunk appears multiple times in a document collection, and since
we want to avoid uneccessary repeated audits for such chunks, we must store one extra bit
of information - this is the uniqueness bit belonging to each chunk in the collection.

• Once all these have been assembled, the owner can put them in a manifest.

Let us assume that all chunks have been stored and the owner obtained a receipt for each from
the respective guardians. Once a document collection is assembled, the manifest describing the
collection is created. This collection audit manifest will contain all the metadata needed for
auditing and litigation, notably:

1. the guardian receipts of all the unique chunks,

2. the smash chunk hashes of all the unique chunks,

3. the uniqueness bits of all the chunk tree nodes,

4. the partial verification bits (the last two bits of the expected intermediate secrets) and

5. the MASH-es.

This audit manifest is a special structure that is sold to insurers who are obligated to store the
metadata and be prepared to receive seeds from the owner at any time to initiate audit requests
on the owners behalf. Alternatively insurers can take on the entire task of issueing seeds 10 (and
therefore generating all the metadata).

The audit request for the document or collection is a tuple consisting of

1. the swarm root hash of the collection audit manifest.

2. the base seed for this audit round

3. the MASH index (unless derivable from the seed) and

4. common TTL (storage period).
9 Implementation note: IO and memory allocation being the main bottleneck, the secrets for all seeds are

best calculated with a single chunking iteration.
10 This can be done trustlessly if the insurer generates masks for the seeds themselves and publishes them

(put it on the blockchain, or just publishes their own valid receipt). If the seed is leaked before it is due, or not
revealed when it is due, the insurer stands to lose their deposit and compensate the owner. To catch the insurer
caching results on their own beforehand, they need to collect signed audit responses from all nodes to show the
nodes have seen the seed. Nodes are rewarded if they report leaked seeds or incorrect MASH-es. Therefore the
auditor can cheat the audit only if they collude with the custodians of each chunk in the collection in advance,
and precalculate their secrets. By keeping the reward for leaking significantly higher than what the insurer can
afford as bribe will make this line of attack uneconomical.

16

The audit request is signed by the owner.

Audit request are sent out to the swarm, addressed by the swarm root hash of the collection
audit manifest.

Auditing an entire document collection requires audits of many chunks but the main auditor
launches an audit of the first chunk only. Once the audit is thus initiated by the main auditor
it proceeds automatically until it is complete or an error is found.

If any of the metadata is not available at the time of the audit, the main auditor will not be
able to conduct a proper audit and therefore they cannot respond to the owner. If this happens,
the owner can escalate the issue and start litigation against them by sending the audit request
in a transaction to the blockchain.

Initiating the automated audit process:

1. Anyone that has the collection audit manifest can act as the main auditor and start off
the recursive collective audit procedure.

2. The main auditor retrieves the supporting structures (guardian data, smash chunk hashes,
partial verification bits, uniqueness bits and the MASH-es).

3. The auditor starts by verifying the MASH root and the signature and checks the integrity
of the support data.

4. If all the data checks out, the main auditor then sends out the audit request to the top
chunk (hashing to the collection swarm root hash) of the collection.

Recall that a chunk encodes a subtree, in particular a non-leaf chunk consists of 128 swarm
hash segments. These are the hashes of chunks on the lower level of the chunk tree, each in turn
encoding their subtree. In the initial round (and the only one in case of success) the audit involves
sending out audit requests of the simple type. These requests are similar to retrieval requests
except that in their response, proximate storers do not send back the chunk itself but instead
they calculate the audit secret hash (ASH) and respond with that. Thus during simple audit,
audit requests are broadcast from a node to its peers in the swarm and the swarm collectively
forwards them all the way to custodian nodes. Responses travel back to parent auditors the
same way (see Figure 5).

After the audit has been initiated, the automated collective audit process proceeds as follows.

5. The main auditor launches the collection/file audit. This means they send an audit re-
quest for the chunks represented by the hash segments in their own chunk one at a time
proceeding from left to right skipping chunks that occurred before in the collection (as per
the respective uniqueness bit).

6. These audit requests for a chunk are addressed by the swarm hash of the chunk, and get
forwarded in the usual way to end up at the custodian of the chunk in question.

In order to accelerate the process we make sure that peers that get involved in the collective
audit get forwarded all the relevant data they need:

7. In addition to the audit request as specified above the parent auditors send the partial
verification bits and uniqueness bits relevant to the subtree audited by the child auditor.

These storers that have just received an audit request are either custodians of a data chunk
(leaves), or they are custodians of an intermediate chunk in the swarm tree just like their parent
auditor. This is just one off network traffic and need not be repeated for subsequent audits.

17

Hi
0

ci−1
0

Hi
1

ci−1
1

Hi
2

ci−1
2

Hi
R(i)

ci−1
R(i)

ci0 (auditor)

si−1
0 si−1

1 si−1
2

si−1
R(i) si−1

R(i)+1 ASH

εi−1
0 εi−1

1 εi−1
2

εi−1
R(i) εi−1

R(i)+1

ci+1
0 (parent auditor)

seeds

validation

chunk level i

chunk level i− 1

chunk level i+ 1

challenge

response

challenge

response

challenge

response

backtrack

notification

continued audit

challenge

response

challenge

response

challenge
response

. . .

. . .

. . .

Fig. 5: This figure zooms in on a chunk in a chunk tree of a document. The chunks represent
their custodian nodes that act as auditors of the subtree their chunk encodes. The arrows
represent the flow of information in the successive steps of calculating CRASH. The custodian
of the non-leaf chunk receives a seed and iterates over the hashes of its chunk. It initiates an ASH
challenge on their immediate child nodes in succession. After receiving the response from one
chunk’s custodian, they perform validation against the error bits and calculate the subsequent
seed that they then send on to the following child as an ASH challenge. In case the validation
fails, the node backtracks and escalates the audit to a Merkle proof challenge (dashed lines).
After piping the seed through the children’s audits and getting back valid ASH-es, the node
performs a self-challenge as if it was a leaf chunk and sends back the resulting audit secret to
their parent auditor.

8. Custodians of an intermediate chunk proceed in the same fashion as the top auditor and
recursively spawn audit requests on the chunk/subtree defined by the successive hash
segments of their chunk one at a time.

9. Custodians of leaf chunks simply calculate the audit secret hash for their chunk using the
seed they received and return that if the partial verification bits match. If they do not
match then something went wrong and they respond with a complete Merkle proof instead.

10. Upon receiving the secret for a chunk (the simple ASH response) represented by a hash
segment of their own chunk, the auditor also checks the secret against the corresponding
partial verification bits. If no error is detected, the auditor generates the next seed needed
for the audit of the next subtree addressed by the following hash segment. If errors are
detected, the auditor starts backtracking to find the source – see point 14.

11. After all subtree secrets are covered, i.e., the ASH for (the chunk hashing to) the rightmost
hash segment is received, the auditor then uses the next seed to calculate their own ASH
i.e. the secret for their own chunk. They check their verification bits and if that matches
they respond to their parent auditor with this secret. If it does not match they know an
error occured before, so they start backtracking to find the source – see point 14. This step
is not spurious because in case there are skipped subtrees (as per uniquness bits), the ASH
of the last child does not prove their possession of the entire chunk, ie. a malicious storer
could use the non-unique chunks hashes for storage and still pass the audit any number of
times.

It is easy to see that this process follows the order defined in the previous section, and therefore
the last secret calculated by the top auditor is the collection-level recursive audit secret (CRASH)
for the collection in question.

18

12. If everybody responds to the audit and if the final secret (CRASH) matches the respective
mask (MASH), then the audit is successful. At this point the main auditor can send a
MASH proof to any interested party, proving a successful audit.

13. Whoever is interested can verify the MASH proof against the MASH root and if it checks
out, they can be fairly certain the collection is preserved in full integrity and promptly
retrievable in the swarm.

Failure:

14. If at any time during the audit process there is no response to an audit request about
a chunk, the guardian of that chunk is looked up by the responsible auditor and is sent
a Merkle proof request. Upon receiving a repsonse, the auditor verifies the proof and
calculates the ASH secret and proceeds according to steps 1–8. If there is no response, the
audit is escalated and litigation on the blockchain starts: the auditor sends the ASH proof
challenge to the blockchain accusing the guardian of having lost the chunk in question.
From here on the standard deadline for refutation starts. The exact procedure is discussed
in [5] .

15. Errors are detected in two ways: either an intermediate auditor finds that one of their
children returned an audit secret that does not match the verification bits, or the main
auditor finds that the final secret does not match the respective MASH. When this happens
we need to find the culprit, i.e., the node that lost the chunk. This is done by sending out
successive Merkle proof challenges. Luckily, due to the iterative error coding scheme used
(in which one segment’s ASH is the input to the seed of the next challenge), once an error
occurs the probability of it staying undetected falls exponentially. Therefore the culprit is
most likely to be among the most recently audited chunks.

As a consequence of this, the best strategy is to proceed backwards and check the most recently
audited chunks directly for proof of custody using a Merkle proof challenge. If a node responds
with a correct proof, the previous chunk is queried. Once a node fails to respond with a correct
proof we have found the culprit. If a culprit is found, the audit is escalated and litigation on
the blockchain begins. The node carrying out this (partial) audit feeds back the information
about the error to their parent auditor. Thus the peers know not to pursue litigation themselves
against their child auditor 11 .

Note that in our recursive auditing scheme, the intermediate (non leaf) nodes were not only
audited themselves, but they also served to initiate audits on the subtrees encoded in their
chunk. This offers great efficiency gains because if the entire audit were to be carried out by
just one peer, then chunks for each intermediate node would need to be retrieved in order for
the main auditor to initiate all the audit requests for subtrees. Collective auditing has the
immediate benefit that no intermediate chunks ever need to be actually retrieved, because the
audit of subtrees are carried out by peers that store the chunk. This means a successful audit
require only one challenge-response message roundtrip per node involved.

4.3 Ensuring correct syncing and distribution

As it turns out, collective auditing has great advantages in policing correct syncronisation. As
a result of recursive audits, when audit responses are retrieved, the audit requests come from
nodes independent of the owner. This helps nodes identify neighbours that refused to sync. If

11 In order to protect against offending nodes to simply responding with frivolous litigation notices, the notice
needs to contain a transaction hash for the challenge sent to the blockchain. This way parent auditors can rest
assured the audit is indeed escalated.

19

an audit request reaches a node that is most proximate to the target chunk, the node recognizes
that it is a chunk that it was supposed to receive while syncing with one of its peers. If it did
not, then it sends an audit request to the chunk’s guardian and feedback to its parent auditor
(see Figure 6).

This can be thought of as a warning to the guardian (or in fact the node that acts as custodian). If
they still keep the chunk to themselves, they will lose money as a result of litigation. Even if they
are innocent, they are motivated to forward since that is cheaper still than litigation. Therefore
they will forward the audit request to their appropriate online peer towards the node that they
had forwarded the original store request to. If all nodes delegate and forward, the proximate
node will eventually receive the chunk and can act as custodian. Interestingly, this situation
could also happen as a result of network growth and latency. We conclude that SWINDLE
recursive auditing can repair retrievability 12 .

node

auditor

challenge

node

forwarding

guardian

node

challenge

closest node

node

challenge

custodian

missing
link

challenge

chunk address

•
challenge

failed audit

Fig. 6: The arrows represent local transactions between connected peers. After the audit
reaches the closest node and the chunk is not found, the closest node challenges the guardian
who in turn challenges the node it originally bought a receipt from, and so on until the challenge
lands on the current custodian who now has the chance to connect to the node that is actually
closest to the chunk address (or at least closer).

If the closest node gets the chunk, it calculates the audit secret and the audit can continue. If
there is a delay longer than the timeout, the audit concludes and litigation starts against the
current custodian. The initiator includes the address of the known closer node without which
the impostor cannot be prosecuted.

The collective audit is also used as a health check, for instance, to repair chunks in erasure coded
collections. The repair process itslef is independent of the litigation (see [5]).

5 Conclusion

In this paper we presented a simple proof of custody formula inspired by the Wilkinson–Buterik
proof of storage used by Storj ([6]). The formula offers 3 different types of challenge that

12 Note that adaptation to network growth and shrinking is taken care of by the syncing protocol. However if
network connections are saturated and/or nodes have not yet heard of each other it could happen that they are
genuine yet appear not syncronized.

20

auditors can use in different stages. We specified an auditing and litigation scheme that has
ideal properties to secure the swarm against chunk loss.

SMASH/CRASH proofs offer integrity checking for chunks as well as for documents and docu-
ment collections that

• allows owners to initiate and control audits without storing any information other than
the swarm hash of the chunk;

• allows owners to outsource auditing without a trusted third party;

• it provides a seed generation algorithm for securing large document collections with a
single audit secret so it scales for both storage and bandwidth;

• the successive secrets matched against verification bits offer a method of error detection
which makes it very efficient to find offending nodes without remembering the (masked)
secret for each chunk;

• allows easy verification by third parties like smart contracts to serve as evidence when it
comes to litigation on the blockchain;

• works without ever writing anything to the blockchain which is thus only used for last-
resort litigation;

• enables compact proofs to optimize bandwidth use and prevent blockchain bloating

• offers guardians and custodians ways to refute the challenge, including proof that auditors
request is invalid.

We outlined an auditing and litigation protocol which

• offers efficient ways to probe the swarm off-chain with recursive outsourceable collective
audits;

• enables prompt incentivised escalation whereby an audit continues as litigation on the
blockchain;

• helps nodes identify greedy peers that do not forward chunks;

• offer a way to repair improper syncronisation state;

• offer a method to detect a damage in erasure coded data ideally leading to repair due to
redundancy

References

[1] Kevin D Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: theory and imple-
mentation. In Proceedings of the 2009 ACM workshop on Cloud computing security, 43–54.
ACM, 2009.

[2] Vitalik Buterin. Secret sharing and erasure coding: a guide for the aspir-
ing dropbox decentralizer. 2014. URL: https://blog.ethereum.org/2014/08/16/
secret-sharing-erasure-coding-guide-aspiring-dropbox-decentralizer.

[3] Ralph C Merkle. Protocols for public key cryptosystems. In Proc. 1980 Symposium on Se-
curity and Privacy, IEEE Computer Society, 122. IEEE, 1980.

[4] Hovav Shacham and Brent Waters. Compact proofs of retrievability. Journal of cryptology,
26(3):442–483, 2013.

21

https://blog.ethereum.org/2014/08/16/secret-sharing-erasure-coding-guide-aspiring-dropbox-decentralizer
https://blog.ethereum.org/2014/08/16/secret-sharing-erasure-coding-guide-aspiring-dropbox-decentralizer

[5] Viktor Tron, Aron Fischer, Daniel Nagy A, and Zsolt Felföldi. Swap, swear and swindle:
incentive system for swarm. Technical Report, Ethersphere, 2016. Ethersphere Orange Papers
1. URL: bzz://ethersphere.sw/orange-papers/1/sw^3.pdf.

[6] Shawn Wilkinson, Tome Boshevski, Josh Brandoff, and Vitalik Buterin. Storj: a peer-to-peer
cloud storage network. Technical Report, storj, 2014. v1.01. URL: https://storj.io/storj.pdf.

22

https://storj.io/storj.pdf

	Introduction
	Auditing chunks with pregenerated secrets
	Audit by challenge and response
	Calculating the audit secret
	Masked audit secret hash (MASH) tree
	Responding to a challenge

	Repeatability and file-level audits
	The problem of scaling audit repeatability with fixed chunks
	Collection-level recursive audit secret hash
	Generating the seeds

	CRASH-proof auditing and litigation
	Prerequisites for insured storage
	Document- or collection-level auditing and litigation
	Ensuring correct syncing and distribution

	Conclusion
	Bibliography

