

swarm

A LinuxPiter presentation by
Daniel A. Nagy

swarm: Distributed storage for
Ethereum, the Turing-complete

blockchain

swarm: purpose

● Keeping the permanent record*
safe and accessible

● Fair allocation of storage and bandwidth
● Reasonable redundancy
● Guaranteed integrity

* Đapp content, blockchain & state archive,
contract source, NatSpec, registry indexes …

swarm: architecture

Well-separated layers connected by simple APIs:

Swarm-hosted Đapps

Virtual, content-addressed webserver

Random-access arbitrary-length files

Swarm-hosted Đapps

Chunk (fixed-size block) storage

swarm: chunk store layer

Underlying storage mechanism:

MemStore

DbStore

NetStore

 swarm: network store layer

● Ethereum devp2p multiprotocol suite
● Reliability and security guarantees
● Semi-permanent peerpool

● Kademlia topology and routing
● Request forwarding
● Smart syncronisation, content distribution

● What to store?
● Proximity vs popularity
● Maximum resource utilization, auto-scaling elastic

cloud

 swarm: incentives

● Swarm Accounting Protocol
● balance with service or pay
● p2p micropayment scheme
● Bzz: retrieval/bandwidth w chequebook
● Strategies of withheld auto-payments
● min risk & tx cost, max liquidity

● Availability insurance
● (auto)litigation by vm-verifiable challenge
● Registration & deposit

 swarm: bzz and APIs

● BZZ Protocol
● Peer forwarding protocol
● Retrieval, request forwarding protocol
● Syncronisation protocol
● SWAP payment protocol

● APIs
● JS (console, json-rpc, ipc, web3.js)
● HTTP proxy
● Command line tools

swarm: upper layers

HTTP-based API, like a locally running web server
with GET, PUT, POST, DELETE methods

URL examples:

bzz://raw/9b4147a...9abc6c
bzz://9b4147a...9abc6c/
bzz://9b4147a...9abc6c/#4
bzz://9b4147a...9abc6c/imgs/apron.jpg
bzz://clippedwings/#4

swarm: upper layers

Basic Đapp example: personal photo album

● One producer – many consumers
● No concurrent modification
● Infrequent changes
● Latency acceptable

swarm: upper layers

Complex Đapp example: distributed “dropbox”

● Concurrency
● Payment and rewards
● Security

– Confidentiality
– Plausible denyability

swarm: upper layers

From Web 2.0 to Web3;
complex Đapp architecture

● Facebook
● Google
● Wikipedia
● OpenStreetMap

swarm: status

Project status:
● Reference implemention: swarm-capable geth

client, vanilla proof of concept
● Funding, community support
● Roadmap

Source repository:
https://github.com/ethersphere/goethereum/tree/bzz

swarm: Thank you!

Questions, comments?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

